

Directives Deep Dive (using C)

Finding Parallelism in your code

(Nested) for loops are the best example

Large pieces of work are needed to offset GPU overhead

Code must be parallelizable – typically means iterations of the for

loop must be independent of each other

Compiler must be able to figure out sizes of data regions

Pointers and pointer arithmetic should be avoided if possible

Best to use subscripted arrays, rather than pointer-indexed

arrays.

Any function calls within the accelerated region must be able to

be inlined.

Window Minimum Example

Output(i,j) = min(Output(i,j), Inp(i,j), Inp(i,j+1), Inp(i+1,j), Inp(i+1,j+1)…);

Input Matrix

Output Matrix

“Window”

We iterate over the output matrix,

reading from each input point several

times and writing to each output

point once.

Window Minimum – Alternate Realization

Output(i,j) = min(Output(i,j), Inp(i,j));

Output(i,j+1) = min(Output(i,j+1), Inp(i,j));

Output(i+1,j) = min(Output(i+1,j), Inp(i,j));

Output(i+1,j+1) = min(Output(i+1,j+1), Inp(i,j));

….

Input Matrix

Output Matrix

“Window”

We iterate over the input matrix,

reading from each input point once

and writing to each output point

several times (perhaps).

Code Sample 1

#pragma acc region

{

 for(i=0; i<(nx-(wx-1)); i++){

 for(j=0; j<(ny-(wy-1)); j++){

// loop over the window

 for (sx=0; sx<wx; sx++){

 for (sy=0; sy<wy; sy++){

 // find the minimum value over the window and store in node(i,j)

 if (node[(j + sy) + ((i+sx)*ny)] > cell[j + (i*(ny-1))]) node[(j + sy)

+ ((i+sx)*ny)] = cell[j+(i*(ny-1))];

 }

 }

 }

 }

}

Accelerator Directive

Nested for loops

YUCK!

Compiler is sad!

Code Sample 2

#pragma acc region

{ // loop over the data set

 for(i=0; i<(nx-(wx-1)); i++){

 for(j=0; j<(ny-(wy-1)); j++){

 tempnode = node[i][j];

 // loop over the minimization window

 for (sx=0; sx<wx; sx++){

 for (sy=0; sy<wy; sy++){

 // find the minimum value over the window and store in node(i,j)

 if (tempnode > cell[i+sx][j+sy]) tempnode = cell[i+sx][j+sy];

 }

 }

 node[i][j] = tempnode;

 }

 }

}

Accelerator Directive

Nested for loops

√ Independent Loop Iterations

√ Nice array subscripting

√ No pointer arithmetic

Compiler is happy!

Process to follow

Follow the basic rules for identifying parallelizable code

Drop in directives

Compile with appropriate flags (-ta=nvidia,cc20 -Minfo)

Look at compiler info output

Rewrite code

Repeat

Benchmark the code when you have a loop that is parallelized

Example 1

Bad code example (grid2o.c)

Getting better (grid2.c)

-Msafeptr – discussion of data management

Basic Data movement directive:

#pragma acc data region copyin(…) copy(…)

Directives categories

Accelerator control (#pragma acc region …)

Accelerator hints (#pragma acc data …)

Data management

Device control

Tips and Tricks

Use time option to learn where time is being spent

-ta=nvidia,cc20,time

Eliminate pointer arithmetic

Inline function calls in directives regions

Use Contiguous memory for multi-demensional arrays

Use Data regions to avoid inefficiencies

Conditional compilation with ACCEL keyword

More: http://www.nvidia.com/docs/IO/117442/Top-12-Tricks-for-

Maximum-Performance-C.pdf

Getting started

www.nvidia.com/gpudirectives

Download PGI tools

Up to 30 days free usage (trial license)

Documentation

User forums

All features available to Fortran users as well

http://www.nvidia.com/gpudirectives

